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1.• ABSTRAC7

The heat transfer to a hemispherical nose cone sutjec-

ted to hypersonic flow conditions is calculated for three Re'r¢>

Numbers. The theory is compared with the results of test runs

at these Reynolds Numbers on a stainless steel hemisphere in the

Polytechnic hypersonic tunnel facility. Except for the region of

highest (theoretical) heat input, the comparison is good.

Using the theoretical heat transfer results in conjunc-

tion with the one-dimensional transient heat conduction solution

through a spherical shell element, temperature histories are ob-

tained at selected points in the interior of the hemispherical

nose cone. A comparison with experimental data shows a satisfac-

tory agreement.

It is concluded that the theoretical heat transfer va-

lues used in conjunction with the one-dimensional transient heat

conduction solution through a spherical shell element, are ade-

quate for predicting the temperature distribution within the

hemispherical nose cone. The restrictions are to flows with a

Reynolds Number range of from one to five million. stagnation

temperatures less than 4000 R, and pressure distributions similar

to that given in this report.



2.

2. SYMBOLS

(B) buried thermocouple, located midway between heated and
insulated (inner) surfaces

Cf local skin friction coefficient

f Blasius non-dimensional friction factor

h enthalpy

(H) thermocouple located on heated surface

(I) thermocouple located on insulated surface

k thermal conductivity

NR Reynolds number, ps (hse )1/2 R o/Se

NR NR se

NRO Reynolds number based on momentum thickness, Pe Ue e/Pe

N Nusselt number, qwRo/(Ts, - Tw) k

P pressure

Pr Prandtl number

q heat transfer per unit area per unit time

r perpendicular distance from surface to centerline of
hemisphere

r r/R0

Ro external nose radius of hemisphere

s distance along surface measured from the stagnation
point along a meridian

s s/R0

T temperature

T (T s T)/(Ts " Ti )



3.

u local velocity at edge of boundary layer

U u/(h, ) 1/2

pressure gradient parameter

b boundary layer displacement thickness

P5/ps hsSe e e

a momentum thickness

Iviscosity coefficient

e

p mass density

Pe/Pse
e

Ishear stress

aw adiabatic wall

• conditions external to the boundary layer

i initial conditions

s stagnation conditions

w wall conditions
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3. INTRODUCTION

This report is one of a series dealing with the general

problem of temperatures, deformations, and material changes of

a hemispherical configuration in a hypersonic flow environment.

The principal purpose of this report is to present a simple method

for predicting the temperature distribution within the hemispheri-

cal body under certain restricted hypersonic flow conditions. A

reasonably accurate knowledge of the temperature distribution will

be necessary for subsequent theoretical studies of stresses and

deformations, and for the interpretation of experimental results.

First, a theoretical analysis is made of the heat trans-

fer to a hemispherical body under hypersonic conditions for laminar,

turbulent, and transition boundary layer regions. The results are

compared with experimental heat transfer data obtained on a hemi-

spherical nose cone configuration in the Polytechnic hypersonic

facility.

Except for the region of highest heat input, the agree-

ment between theory and experiment is sufficiently satisfactory to

suggest the following simplification in the temperature distribu-

tion estimation within the hemisphere. The local theoretical heat

transfer coefficient is used in conjunction with the transient

one-dimensional heat conduction solution for spherical shell ele-

ments. Temperature-time histories at selected points in the in-

terior are compared with available test data and the agreement is
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found to oe quite satisfactory for purposes of future estimation

of temperatures on similar models which are not equipped with

thermocouple instrumentation.

Future hemispherical nose corne modeis of various

thicknesses, but of similar external configuration will be in-

strumented only on the inner, or insulated surface. Thus, if

tne method of estimating temperatures presented in this report

is reasonably accurate, these predictions can be used to obtain

the physical properties of materials from data available on the

variation of these propert'is with temperature, to calculate

thermal stresses, and for any purpose requiring a knowledge of

the temperature to make calculations and to evaluate experimen-

tal data.
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4. THErRETICAL HEAT TRANSFER GALGULATTQNS

The heat transfer to a hemispherical configuration un-

der hypersonic conditions was calcuLateck for tr, values oi t e

N~ ~ 16 6 10
Reynolds Number, NRa 0.97 X 106, 3.3 X 10 and 5.1 X 106. The

Reynolds Numbers were chosen to coincide with the values at which

hypersonic tunnel tests had previously been run on a stainless

steel hemisphere. This stainless steel model was specifically de-

signed to obtain experimental values of the heat and load input.

Complete data are reported in Ref. [1), but a brief description of

the model and tests are given in Section 5.

The technique for predicting the laminar heat transfer

under the above conditions may readily be obtained from Ref. [2],

[31, and [4). In Ref. [2], Lees provides the most convenient me-

thod for estimating the laminar heat transfer under hypersonic con-

ditions. It involves the assumption of a constant value of pres-

sure gradient parameter, P, in the transformed coordinate system;

a ratio of wall to stagnation enthalpy, small compared to unity,

and a linear dependence of viscosity on temperature (Pete= Pwlw)*

There results a simple numerical evaluation of an integral of ex-

ternal flow properties and radius to determine the heat transfer

distribution.

In terms of the variables used here, the theory of Lees

gives
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N - --- oupr

(0.353)P 3 ( ) 4. r (fpdN Rs , ; 2 dT1 2

The limiting process for obtaining the stagnation point

value from the above equation leads to the axially symmetric

stagnation point heat transfer (F- l, t-- etc.). This

gives

N
= (0.706) p 1/3O

where

p= d/d) at s= 0

The technique involving the determination of the tran-

sitional and turbulent heat transfer requires the determination

of the transition point on the model. N values of 200 and 300

were chosen for this model. These transition Reynolds Numbers

are based on experimental results performed by various investi-

gators.

Before starting the analysis of the turbulent boundary

layer, it is necessary to evaluate the laminar coefficient of

wall friction at the transitional point.

By definition, the wall friction coefficient is:
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Cf/2 = %/(Pu )

Through Lees transformation,

Cf/2 = ( o (2 ;)'/2 fw'

which may be written as

Cf/2 = 0.22/NR

To evaluate the wall friction coefficient in the tran-

sitional and fully turbulent flow regimes, the friction law de-

veloped in Ref. £5) was adopted.

0.013 B

f N ~114 - Nn

Re NR

This law is similar in form to that developed by Persh,

Ref. [6]. The value of n was taken as 1, as suggested in Ref.

£9).

The constant B of this law is evaluated from the lami-

nar flow such that the friction coefficient Cf/2 remains continu-

ous at the laminar to turbulent transition point.

B n 0.013 C sL

e R 9 2 j e trans.09
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In order to obtain the heat transfer, a stepwise solu-

tion of the boundary layer momentum equation is obtained through

the use of boundary layer form factors which are based on a cor-

relation of incompressible data.

de + 2 du 1 dp 1 dr- = (C f/2,) e + . .... + - ]

ds ue  ds P. ds r ds

In this work, following the suggestion of Ref. [5], the

form factor was taken ass

H = (b*/e) = -l

The heat transfer is calculated from

= Pr(2/3)(haw - hw)Pe U(Cf/2)

and finally

h -h pu
N = P I/ (3(..aw - h..Z) 1/2 (C /2) NRu r h - h

se  w se

The theoretical distribution of heat transfer along a

meridian for a laminar boundary layer is shown in Fig. 1. The

heat transfer parameter (Nu /N R*) correlates the heat transfer for

any value of the Reynolds Number. In the transition and turbu-

lent boundary layer range, however, the calculations were made
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for three specific values of the Reynolds Number. Fig. 2 presents

the results of calculations, based on a transition-turbulent boun-

dary layer for Reynolds Numbers of 0.97 x 106 3.3 x 106 and

5.1 x 106. Transition from laminar boundary layer is assumed to

occur at a Reynolds Number based on a momentum thickness (NR 9 of

250. The heat transfer parameter Nu IN R4/5 is plotted against dis-

tance along the meridian from the stagnation point. In Fig. 3,

the same calculations, based on a transition value of N = 300

are graphically presented.
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5. COMPARISON WITH EXPERIMENTS

In Ref. [1), the results of 6 test runs at simulated

hypersonic speeds on a hemispherical model were reported in both

graphical and tabular form. The model was fabricated of Type

304 stainless steel, had a 7-3/4 inch outside diameter and one-

inch wall. It was extensively instrumented with pressure taps

and thermocouples. The principal mission of these tests was to

obtain basic data on both the aerodynamic and thermal loads.

Aerodynamic load data were presented in Ref. [1 and are also

shown in Fig. 4. (This pressure distribution was used in cal-

culating the theoretical heat transfer). The procedure for ob-

taining the thermal input, based on the thermocouple temperature-

time histories, is outlined below.

The hemispherical model was instrumented with a total

of 40 thermocouples, as shown in Fig. 5. Thirteen of these

thermocouples were specially constructed one-dimensional plugs

for heat transfer work. This instrument was first described in

Ref. [7], and further discussed in Ref. El). A sketch of a

typical thermocouple plug is shown in Fig. 6. The principal vir-

tue of these plugs is the relative ease with which the heat in-

put could be deduced from the temperature-time history of the

thermocouple on the heated surface of the model. The remaining

thermocouple installations were "standard", and were disposed on

the outer and inner surfaces of the model as well as at interior
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points. Sketches of a "standard" heated surface thermocouple and

a buried thermocouple installation are shown in Figs. 7 and B.

The experimental values of the heat transfer were de-

duced from the one-dimensional plug temperature-time histories,

and from similar data from the standard thermocouple installations

on the outer (heated) surface of the model. In the case of the

one-dimensional plugs, the heat conduction equations for the

transient one-dimensional flow of heat through a finite slab were

solved for the heat input qw on the heated side of the slab as a

function of time. The other side of the slab was considered to

be insulated. The plug temperature-time history was used as a

boundary condition. Except for the first few seconds, the values

of qw thus calculated, resulted in an essentially constant value

of the Nusselt Number. The time average of the almost constant

value of the Nusselt Number was used as the experimental value

presented in this report.

In obtaining the experimental heat transfer from the

standard heated surface thermocouples, use was made of the tran-

sient heat conduction solution for the flow of heat through a

spherical shell element, one-dimensional, outside surface heated,

inside surface insulated, Ref. [8]. For the geometry parameter

corresponding to the tested model, temperature-time plots were

carefully drawn for constant values of the heat transfer coeffi-

cient. When the experimental temperature-time history was super-

imposed upon this set of curves, the heat transfer coefficient
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could easily be interpolated at several points and the results

averaged. Again, these heat transfer coefficient values were es-

sentially constant after the first few seconds of the test run.

A comparison of the experimental values of the heat

transfer thus deduced with the theoretical values is shown in Figs.

9, 10 and 11.

In Fig. 9, for example, the theoretical curves are given

in the form of Nusselt Number versus distance along the meridian

from the stagnation point for a value of NR = 0.97 x 106 . These

curves are easily obtained from the basic data presented in Figs. 1,

- 62 and 3. Note, from Table 1, that a value of NR = 0.97 x 10 cor-

responds closely to test runs 1 and 2, and hence experimental data

from these runs are shown. The experimental data deduced from the

one-dimensional plugs are consistently higher than those data de-

duced from the standard surface thermocouple installations. Near

the stagnation point, there is a discrepancy of up to 25% between

theory and experiment, but there is an improvement with higher va-

lues of s. Unfortunately, it is not altogether certain whether

transition occurs at the lowest Reynolds Number, 0.97 x 106 (Fig.9);

but if transition does occur it would be at a value of ; > 0.9.

Fig. 10 shows the comparison between theory and experi-

ment for NR = 3.3 X 106, corresponding to conditions of test runs

3 and 4. A similar presentation for NR = 5.1 x 10 corresponding

to test run 5 is shown in Fig. 11. Once again it can be noted

that experimental heat transfer values from the thermocouple plugs

are usually higher than the heat transfer values deduced from the

standard surface thermocouple data. In Figs. 10 and 11 there is
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no question of transition of the boundary layer from laminar to

turbulent. Additional data in the region of highest heat trans-

fer would have been desirable. Several of the instruments in

this area, however, were damaged during the installation of the

model into the wind tunnel and during the course of the test

runs.

On the basis of the comparisons of Figs. 9, 10 and 11,

it was decided to take the heat transfer results calculated for

the laminar case and for NR = 300 and use the heat conduction

equations through a spherical element to predict the temperatures

within the hemispherical model.
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6. TEMPERATURE DISTRIBUTION

The temperature distribution within the hemispherical

model was calculated by utilizing the heat conduction solutions

for the transient one-dimensional flow of heat in a spherical shell

element, Ref. [8]. FOr a given s and NR9 the heat transfer coeffi-

cient was taken from Figs. 9, 10, or 11. The inner surface was

assumed to be insulated. Temperature-time histories could there-

fore be obtained at any point within the model, for any of the three

Reynolds Number ranges for which the theoretical heat transfer cal-

culations were made.

In the six test runs of Ref. E1], thermocouples were bu-

ried at various points within the body (see Fig. 5) and on the

inner surface. Therefore, the points selected for computing the

temperature-time histories by the above method, included points at

which thermocouples were physically located on the model. The ob-

vious purpose was to obtain a comparison between the experimental

and the calculated temperature-time histories.

The results of this comparison are presented in Figs. 12

and 13, corresponding to the lowest and highest Reynolds Number,

respectively. An examination of these temperature-time histories

reveals that the calculated temperatures are usually higher than

those measured during the test. (T is defined in such a manner

that it will decrease with increasing temperature.) Maximum devi-

ation from the experimentally determined temperatures occuisat
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s 1.4; 6.3% difference at NR = 0.97 X 106, and 13.4% difference

at NR = 5.1 x 106. At the points of highest heat transfer, the

percentage error was somewhat less. For example, for runs 1 and 2,

6NR = 0.97 X 10 , thermocouples 24 and 36 at s = 0.698 gave tempera-

ture-time histories for which the maximum deviation from the calcu-

lated temperature-time history was approximately 2.5%. At the

highest Reynolds Number, the comparable error at the same location

was 10%. It may be noted that while the maximum percentage error

occurs at the region of highest theoretical heat input, the maximum

percentage errors in temperature occurred elsewhere.

The agreement between the experimental and calculated

temperature-time histories is good when one considers that the cal-

culated temperatures are based on a one-dimensional heat conduction

solution. The fact that the calculated values of the temperature

are almost always higher than the experimental values is not wholly

unexpected inasmuch as the calculated heat transfer results are gen-

erally higher than those deduced from the plugs and surface thermo-

couples.
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7. CONCLUSIONS

On the basis of the comparison between theory and ex-

periment of heat transfer and temperature distribution presented

in this report, it is concluded that the simplified method used to

predict temperatures within a hemispherical nose cone in a hyper-

sonic flow is satisfactory. The restriction must be made to flows

in the Reynolds Number range of from 1 X 106 to 5 X 10 6, and to

stagnation temperatures less than 40000 R. In order to apply the

method it is first necessary to calculate the theoretical heat

transfer for the appropriate Reynolds Number. Using the local val-

ues of the heat transfer, in conjunction with the transient, one-

dimensional heat conduction solution through a spherical shell Ole-

ment, yields the temperature-time history at any point within; !lo,

body.
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